
1.  Introduction
Since the industrial revolution, the decrease of pH and carbonate saturation state (Ω) caused by ocean uptake of 
anthropogenic CO2 from the atmosphere, namely ocean acidification (OA), has become an important environ-
mental issue that seriously threatens the marine ecosystem healthy and the development of human communities 
(Doney et al., 2009, 2020; Feely et al., 2004, 2009; Gattuso et al., 2015). It has been widely observed that the 
long-term OA rates are comparable to the rates predicted from the increase of atmospheric CO2 across the global 
oceans (Bates, Astor, et al., 2014; Carter et al., 2017; Dore et al., 2009; Feely et al., 2012; Gregor & Gruber, 2021; 
Ishii et  al.,  2011; Murata et  al.,  2015; Murata & Saito,  2012; Oka et  al.,  2019; Ríos et  al.,  2015; Takahashi 
et al., 2014; Woosley et al., 2016). However, for the coastal oceans, observation-based assessment of OA and 
its driving mechanisms is limited due to the complexity of intertwined factors including anthropogenic forcing, 
natural variability, and local biogeochemical processes (Lui et al., 2015; Sarma et al., 2021; Wakita et al., 2021). 
Atmospheric circulation, mixing of water masses, and biogeochemical signals mitigate or amplify the atmos-
pheric CO2 increase-induced OA (Cai et al., 2011; Wakita et al., 2021), therefore it is difficult to decipher/validate 
OA with robust evidence.

Abstract  The acidification of coastal waters is distinguished from the open ocean because of much 
stronger synergistic effects between anthropogenic forcing and local biogeochemical processes. However, 
ocean acidification research is still rather limited in polar coastal oceans. Here, we present a 17-year (2002–
2019) observational data set in the Chukchi Sea to determine the long-term changes in pH and aragonite 
saturation state (Ωarag). We found that pH and Ωarag declined in different water masses with average rates of 
−0.0047 ± 0.0026 years −1 and −0.017 ± 0.009 years −1, respectively, and are ∼2–3 times faster than those 
solely due to increasing atmospheric CO2. We attributed the rapid acidification to the increased dissolved 
inorganic carbon owing to a combination of ice melt-induced increased atmospheric CO2 invasion and 
subsurface remineralization induced by a stronger surface biological production as a result of the increased 
inflow of the nutrient-rich Pacific water.

Plain Language Summary  Anthropogenic CO2 absorbed by the ocean leads to a lower pH and 
the calcium carbonate saturation state (Ω) and threatens the marine ecosystems state of healthiness via a 
process called ocean acidification (OA). The Arctic Ocean is particularly sensitive to OA because more CO2 
can be dissolved in cold water. This study used the observations collected over 17 years from 2002 to 2019 to 
estimate long-term trends of Ωarag and pH in the Chukchi Sea. The results show that rapid acidification occurred 
throughout all water masses from 2002 to 2019, leading to or approaching aragonite undersaturation. The rapid 
acidification is attributed to the enhanced increasing concentration of dissolved inorganic carbon. While sea 
ice melt induced uptake of anthropogenic CO2 partly explains the long-term acidification, the remainder is 
due to the increased nutrient-rich Pacific inflow water which promotes the high biological CO2 utilization in 
the surface waters but leads to stronger subsurface acidification due to the regenerated CO2. We suggest that 
the acidity in Chukchi Arctic Shelf waters will increase in the future if the increased inflow of Pacific water 
continues.
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Key Points:
•	 �pH and Ωarag declined at 

−0.0047 ± 0.0026 years −1 and 
−0.017 ± 0.009 years −1 from 2002 
to 2019, 2–3 times greater than 
atmospheric CO2 projected

•	 �The enhanced acidification in Chukchi 
Sea is mainly driven by enhanced 
dissolved inorganic carbon, owing 
to atmospheric CO2 uptake and 
biological activity

•	 �Aragonite undersaturation in Pacific 
Winter Water has been observed from 
2010; other water masses are expected 
to encounter Ωarag < 1 within 15 years
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Among the global oceans, the Arctic Ocean has a strong CO2 absorption capacity due to its low temperature (Bates 
et al., 2006). Both observations and models have shown that the ice-free Arctic Ocean is the most susceptible 
region to OA and that it would be the first ocean basin to encounter severe undersaturation of aragonite calcium 
carbonate (Ωarag < 1) (Qi et al., 2017; Robbins et al., 2013; Terhaar et al., 2020; Yamamoto-Kawai  et al., 2009). 
The decadal increase in sea-ice melt and riverine freshwater input contribute to the dilution of seawater and there-
fore lowers the concentrations of carbonate ion (CO3 2−), total alkalinity (TA), and calcium ion (Bates et al., 2009; 
Yamamoto-Kawai et al., 2009), resulting in a further decrease in pH and Ωarag.

The Chukchi Sea, as an important inflow continental shelf of the Arctic Ocean, has experienced more dramatic 
climate-driven changes. Rapid sea-ice retreat (Screen & Simmonds, 2010; Wang & Overland, 2009) and increased 
inflow of nutrient-rich surface water from the Pacific Ocean (Woodgate & Rebec Ca, 2017; Woodgate et al., 2012) 
resulted in an increase in primary production (Lewis et al., 2020), and the increasing carbon sink accounting 
for more than 50% of the overall Arctic Ocean CO2 sink and 8% of the global marginal sea CO2 sink (Bates 
et al., 2006; Ouyang et al., 2020; Tu et al., 2021). Sea-ice loss also has substantial impacts on OA as it experiences 
extended ice-free periods during summers (as illustrated in Figure S1 in the Supporting Information S1). The 
emerging ice melt promotes primary production and CO2 removal, which keeps high OA buffer capacity and over-
saturated Ωarag (>1) in the surface mixed layer. Meanwhile, ice melt is sometimes accompanied by the dissolution 
of CaCO3 trapped in sea ice, which consumes CO2 and alleviates acidification (Rysgaard et al., 2012). Although 
the concentration of dissoluble CaCO3 is possibly low in sea ice (2–4 μmol L −1) (Bates,  Garley, et al., 2014; 
Rysgaard et al., 2012), the dissolution of CaCO3 would increase TA and also the CO2 buffering capacity, leading 
to enhanced atmospheric CO2 uptake. On the contrary, sea-ice melt removes the barrier to air-sea gas exchange 
and promotes CO2 uptake from the atmosphere, which potentially lowers surface pH and Ωarag. In addition, 
increased microbial decay of organic matters in autumn and winter can strengthen the  seasonal acidification by 
releasing CO2 into the subsurface and bottom waters (Bates et al., 2009; Qi et al., 2020). In particular, close to 
40% of the shelf bottom water was subject to Ωarag of less than 1 and about 80% of the shelf bottom water was 
subject to Ωarag of less than 1.5 in summertime during 2009–2011 summer (Bates et al., 2013). These ongoing 
changes imprinting on top of the accumulated anthropogenic CO2 in the atmosphere make it more complicated to 
understand the mechanism and trend of OA in this climate-sensitive region.

On a decadal scale, the long-term OA trend in the Chukchi Sea can be attributed to a combination of several 
processes, including those increasing acidity (cooling-driven increased CO2 solubility and atmospheric CO2 
uptake, and CO2 released from respiration) and those decreasing acidity (warming-driven decreased CO2 solubil-
ity and CO2 outgassing, photosynthesis, and dilution by sea-ice melt water and river water) (Bates et al., 2009; Cai 
et al., 2010; Else et al., 2013; Jutterström & Anderson, 2010; Kaltin & Anderson, 2005; Rysgaard et al., 2007). 
However, the current status and long-term changes of OA in the Chukchi Sea are not well known due to limited 
observations collected from some sporadic cruises. Thus, it is of great importance to better understand how fast 
OA rates change in the Chukchi Sea and how the carbonate chemistry responds to climate-driven changes as 
the Chukchi Sea is one of the most productive ecosystems in the world with a high biodiversity and important 
commercial fisheries (Lewis et al., 2020).

In this study, we first examined the variations of pHT and Ωarag based on the data collected from multiple Arctic 
research cruises from 2002 to 2019 and then quantified the long-term trends of OA in the Chukchi Sea. Finally, 
we evaluated the links between the environmental changes and OA over the study period.

2.  Data and Methods
2.1.  Synthesis Data Set

Concentrations of total alkalinity (TA), dissolved inorganic carbon (DIC), dissolved oxygen (DO), nutrient, and 
auxiliary data (e.g., temperature and salinity) from water samples collected during multiple cruises, including 
SBI 2002, SBI 2004, CHINARE 2008, 2010, 2012, 2014, 2016, 2017, 2018 and 2019 (Figure 1, Figure S2 in the 
Supporting Information S1). The discrete samples from CHINARE cruises were collected by Niskin bottles on 
a CTD rosette package employing a SBE 911plus conductivity-temperature-depth (CTD) system. Samples were 
collected in borosilicate glass bottles and were preserved with HgCl2. All samples were analyzed within 8 weeks 
after collection. DIC was measured from 0.75 mL water samples via acidification and subsequent quantifica-
tion of released CO2 by a non-dispersive infrared CO2 analyzer (Apollo SciTech DIC analyzer, USA). TA was 
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measured using the open-cell Gran titration method (Apollo SciTech Alkalinity analyzer, USA). Both DIC and 
TA were measured multiple times (N ≥ 3) until the repeatability had a precision of better than 0.1% (±2 μmol 
kg −1). DIC and TA were calibrated using certified reference material (CRM) supplied by A.G. Dickson, Scripps 
Institution of Oceanography (USA). The DO concentration was determined using the automatic spectrophotomet-
ric Winkler titration system, with accuracy better than 1% (Pai et al., 1993).

2.2.  Calculation of OA Parameters and AOU

pH and Ωarag were calculated using version 1.1 of CO2SYS for Matlab (Heuven et al., 2011), with the carbonic 
acid dissociation constants K1 and K2 from Roy et al. (1993), KSP from Mucci (1983), KSO4 from Dickson (1990), 
and the total borate-salinity relationship from Lee et  al.  (2010). We used the dissociation constants (K1 and 
K2) of Roy et al. (1993) recommended by Chierici and Fransson (2009), which yields similar results to those 
using Mehrbach et al. (1973) as refit by Dickson and Millero (1987) described in Bates et al. (2009) and Chen 
et al. (2015) for low temperature waters. The pH was calculated in total scale (pHT), for simplicity, the following 
‘pH’ in this study refers to total scale pH at in situ temperature, unless otherwise specified. The associated uncer-
tainty in CO2SYS calculations (due to uncertainties in TA, DIC, and dissociation constants) was estimated using 
the add-on from Orr et al. (2018).

The apparent oxygen utilization (AOU), used as a measurement of oxygen generation or consumption through 
biological processes, was calculated as the difference between the saturated oxygen concentration (O2,sat) and the 
observed oxygen concentration (O2,obs):

AOU = O2,sat − O2,obs� (1)

where O2,sat was calculated using the equations of H. E. Garcia and Gordon (1992); H. Garcia and Gordon (1993).

Figure 1.  Map of the Chukchi Sea superimposed by topography. Different colors and symbols represent sampling stations 
in different years. The solid gray and black contours indicate the ice edge (15% ice concentration) in the first week of August 
2002 and 2019, respectively; while the dashed contours indicate that in the first week of July. The daily sea ice concentration 
(SIC) data were obtained from the National Snow and Ice Data Center (NSIDC). The product is available at a horizontal 
resolution of 25 km on a polar stereographic projection (https://nsidc.org/data/NSIDC-0079/versions/3).
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2.3.  De-Seasonalization Procedure and Statistical Analyses

To avoid statistical bias due to seasonal variability to yearly means of observed variables, we applied de-seasonal-
ization adjustments to both hydrographic and carbonate system parameters by assuming that the mean seasonality 
of climatology remained constant during the period of study. We used the method described in (Bates, Astor 
et al., 2014; Takahashi et al., 2009; Wakita et al., 2021). For example, the de-seasonalized monthly mean value of 
pH, pHdes, in each water masses was calculated as follows:

pHdes = pHobs − pHmonth
mean + pHannual

mean� (2)

where pHobs is the observed value of pH during a month, 𝐴𝐴 pHmonth
mean  is the monthly mean value of pH, and 𝐴𝐴 pHmonth

mean  is 
the annual mean value. In this study, we used the summer mean value to substitute the annual mean due to the lack 
of data on yearly basis. This approach removes most of the seasonality observed and dampens potential seasonal 
bias of sampling ((Bates, Astor et al., 2014). In the following text we present the long-term trends of pH and Ωarag 
with the de-seasonalized datasets.

We adopted the water mass classification used by Gong and Pickart (2015) and divided the Chukchi Sea waters 
into five main water masses, Pacific Winter Water (PWW), Alaska Coastal Water (ACW), Chukchi Summer 
Water (CSW), Early season Melt Water (ESMW), and Late-season Melt Water (LSMW) (Figure 2). The princi-
ples of doing water mass classification, uncertainty assessment, and sensitivity test are given in Text S1 in the 
Supporting Information S1.

2.4.  Drivers of the Long-Term pH and Ωarag Trends

We decomposed the variation of pH and Ωarag into multiple components (T-temperature, S-salinity, TA-total 
alkalinity, DIC-dissolved inorganic carbon) to investigate the drivers of long-term changes by using a first-order 
Taylor-series deconvolution approach (Kwiatkowski & Orr, 2018):

�� �� = �� ��
��

× �� + �� ��
��

× �� + �� ��
����

× ���� + �� ��
���

× ���� (3)

where Var is the variable of pH or Ωarag, and dVar is the change in variable. The partial derivatives were esti-
mated based on the observed data assuming a 1‰ change (e.g., increase) on the relative parameters while keep-
ing the other parameters constant (following Orr et al., 2015). Taking the estimation of 𝐴𝐴

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 for example, the 

initial pH0 =  f(T0, S0, DIC0, TA0) from CO2SYS calculation, the changed pH1 = f(T0, S0, DIC1, TA0), where 
DIC1 = 1.001 × DIC0, thus, 𝐴𝐴

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= (𝑝𝑝𝑝𝑝1 − 𝑝𝑝𝑝𝑝0) ∕ (𝐷𝐷𝐷𝐷𝐷𝐷1 −𝐷𝐷𝐷𝐷𝐷𝐷0) . For each derivative term, we used −0.0170 

per °C, −0.0125 per psu (practical salinity units), 0.0026 per μmol kg −1, and −0.0027 per μmol kg −1, for 𝐴𝐴
𝜕𝜕𝜕𝜕𝜕𝜕
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, and

𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 respectively; and 0.0097 per °C, −0.0138 per psu, 0.0090 per μmol kg −1, and -0.0085 per μmol 

kg −1 for 𝐴𝐴
𝜕𝜕Ωarag

𝜕𝜕𝜕𝜕
 , 𝐴𝐴
𝜕𝜕Ωarag

𝜕𝜕𝜕𝜕
 𝐴𝐴
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, and

𝜕𝜕Ωarag

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 , respectively.

We further accounted for the freshwater effect which changes S, TA, and DIC by adding a freshwater term 
(following Landschützer et al., 2018 and Ouyang et al., 2020):

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 =
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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×
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where S0 is the mean salinity during the observation, sDIC and sTA are the salinity-normalized DIC and TA, 
respectively. We also estimated the temporal trends of pH and Ωarag due to long-term changes in T, DIC, TA, and 
freshwater, input by taking a time derivative of and rearranging Equation 4 into:

�� ��
��

=
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�
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��
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��

� (6)
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Figure 2.  Classification and distribution of the water masses in the Chukchi Sea. (a) temperature-salinity diagram of the 
water masses. The color indicates aragonite saturation state. (b, c) vertical profiles of temperature (ºC) (color contour and red 
contours) along the western (∼169°W) and eastern cruise track from 2002 to 2019. Superimposed by salinity (white solid 
contours). The major water mass classes are labeled: Pacific Winter Water (PWW), Alaska Coastal Water (ACW), Chukchi 
Summer Water (CSW), Early season Melted Water (ESMW), and Late-season Melted Water (LSMW).
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where β is the sensitivity of pH to T, DIC, and TA (in the case of Ωarag, the sensitivity is written as γ) (Egleston 

et al., 2010). For instance, the sensitivity of pH to DIC is �DIC =
(

���
����

)

∕
(

��
DIC

)

 . T, DIC, TA, S0, and Var are the 
long-term means.

The salinity-normalized DIC and TA were calculated accounting for the riverine and ice meltwater impacts (Friis 
et al., 2003), using the following equations:

�DIC = DIC − DIC�=0

�
× �0 + DIC�=0� (7)

�TA = TA − TA�=0

�
× �0 + TA�=0� (8)

The values of DICS = 0 and TAS = 0 were identified for each water mass. We fit the linear regression between TA 
and salinity, and took the y-intercept value (TA value at S = 0) as the TAS = 0. The TAS = 0 for PWW, ACW, CSW, 
ESMW, and LSMW are 814.2, 1136.7, 995.9, 794.8, and 103.7 μmol kg −1, respectively. The former four rela-
tively higher TAS = 0 values are due to the riverine input, while the lowest TAS = 0 in LSMW is due to ice meltwater 
(Cai et al., 2010). We therefore converted each TAS = 0 to DICS = 0 with the characteristic ratios (TA/DIC = 0.956 
for river waters and TA/DIC = 104/59.8 = 1.739 for ice meltwater; see in the Supporting Information S1 in Cai 
et al., 2010).

We further separate the drivers of the observed pH and Ωarag changes into thermal and non-thermal components. 
The thermal component is driven by changes in seawater temperature (the first term on the right-hand side of 
Equation 4), and the non-thermal component is driven by changes in sDIC, sTA, and salinity (inferred by fresh-
water input due to sea-ice melt and river input, which not only dilutes the surface salinity but also affects the 
carbonate chemistry).

In addition, we also quantified the effects of specific biogeochemical processes (e.g., air-sea CO2 exchange, photo-
synthesis/respiration) on altering pH and Ωarag. Since air-sea CO2 gas exchange does not change TA, photosyn-
thesis/respiration only slightly changes TA, both these two processes affect pH and Ωarag via changes in DIC. The 
contribution of photosynthesis/respiration to DIC and thus pH and Ωarag is calculated from proxies of [NO3+NO2] 
concentration and AOU. The biological effect on DIC could be inferred based on the classical  Redfield ratio of 
O/C/N = −138/106/16.

The contribution of air-sea CO2 exchange to DIC increase can be estimated from CO2 flux:

dDIC𝑒𝑒𝑒𝑒 = FCO2∕MLD� (9)

where dDICex is the change in DIC attributed to air-sea CO2 exchange, FCO2 is the air-sea CO2 flux, and MLD is 
the mixed layer depth (data adopted from Tu et al., 2021). The following equation shows the calculations of FCO2:

FCO2 = � × � ×�� × Δ�CO2� (10)

where f is the correction term for sea ice, f = (1−ice%); k and KH are CO2 gas transfer velocity and the solubility of 
CO2 (calculated from temperature and salinity following Weiss, 1974), respectively. The value of k is calculated 
with the monthly second moment of wind speed at 10 m in height, <U10 2>, as suggested by Wanninkhof (2014):

� = −0.251 × < �10
2 > × (��∕660)−1∕2� (11)

where Schmidt number (Sc) is temperature-dependent for CO2 in seawater, computed from SST.

3.  Results and Discussion
3.1.  Distribution of pH and Ωarag in Different Water Masses

The highest Ωarag (2.11 ± 0.11) is found in the ACW, which is also accompanied by medium pH (8.16 ± 0.11) 
(Table S1 in the Supporting Information S1). The ACW is the warmest water in the eastern Chukchi Sea orig-
inating from the Alaska coastal region south of Bering Strait. Approximately one-third of the Chukchi Sea is 
filled with ACW (Figures 2b and 2c; Refs). ACW often enters the Chukchi Sea in mid-to-late summer and is 
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characterized by θ ≥ 3°C and S ≥ 30 (Figure 2a). The maximum temperature of ACW can reach up to 7–10°C 
in August–September (Figure 2a). Low AOU value (averaged 17 μmol kg −1) means that primary production has 
offset oxygen utilization in ACW, which results in highest Ωarag among the five water masses (Table S1 in the 
Supporting Information S1).

The lowest Ωarag (1.09  ±  0.29) and pH (7.97  ±  0.11) values are found in the Pacific Winter Water (PWW) 
(Table S1 in the Supporting Information S1). PWW occupies one-quarter to one-third of the water column in 
the Chukchi Sea (Figures 2b and 2c) and is characterized by low temperatures (−1.57 ± 0.18°C), high nutri-
ent concentrations, and high CO2 due to remineralization of organic matter (Qi et al., 2017; Wynn et al., 2016; 
Yamamoto-Kawai et al., 2009).

The other three water masses, ESMW, LSMW, and CSW are greatly affected by seasonal sea-ice variation and 
primary production (Robbins et  al.,  2013; Yamamoto-Kawai et  al.,  2009). Dilution by sea ice and biological 
production impact pH and Ωarag, and its large variability is marked by dramatic fluctuations in standard deviations 
(Table S1 in the Supporting Information S1).

3.2.  Decadal Change of pH and Ωarag in Different Water Masses

We now investigate the temporal variation (long-term trend) of pH and Ωarag data based on the de-seasonalized 
monthly mean values of each variable. Our results reveal a rapid acidification in the Chukchi Sea with a mean 
annual change rate of −0.0047 ± 0.0026 for pH and −0.017 ± 0.009 for Ωarag from 2002 to 2019 (averaged values 
of all water masses in Figure 3). The mean annual OA rates are highest in the ESMW and LSMW (−0.0060 
to −0.0086 for pH and −0.0247 to −0.0282 for Ωarag), and lowest in the PWW (−0.0033 ± 0.0031 for pH and 
−0.0085 ± 0.0071 for Ωarag) with significant aragonite undersaturation (Ωarag < 1) were observed after 2010 
(Figure 3).

Note that when the original monthly means were used to estimate the decreasing rates of pH and Ωarag, they 
resulted in rates around twice faster than those based on the de-seasonalized means (Figure 3 vs. Figure S3 in the 
Supporting Information S1) We attribute this difference to increased observations in late summer months (late 
August and September) since 2010 (Figure S4 in the Supporting Information S1), during which the seasonal 
acidification is more severe due to stronger respiration in the subsurface waters. To avoid statistical bias due to 
seasonal variability to yearly means of observed variables, it is necessary to perform the de-seasonalization for 
the long-term trends in pH and Ωarag. Not adjusting for seasonality would risk overestimating the acidification 
rates (Figure S3 in the Supporting Information S1). The results also show that the removal of some portion of the 
data or cruise also has a negligible impact on the derived pH and Ωarag trends, indicating the good representative-
ness and robustness of the synthesis results (Figures S5 and S6 in the Supporting Information S1).

3.3.  Processes Controlling the Long-Term Trends in pH and Ωarag

We now quantitatively evaluate how pH and Ωarag respond to environment al change. The decomposition shows 
that thermal effect (warming rate of 0.008°C yr −1 over 2002–2019, Figure S7 in the Supporting Information S1) 
only induces slight changes in the rate of pH and Ωarag across the five water masses in the Chukchi Sea, which are 
negligible compared to their overall changes and the total non-thermal effect (Figure 4).

Among the non-thermal factors, sDIC is the dominate driver for the long-term decrease in pH and Ωarag across 
the five water masses, while salinity effect is always negligible (Figure 4). The contribution of sTA differs among 
water masses, that is, negligible in ACW, CSW, and PWW, but significantly increases pH and Ωarag in ESMW 
and LSMW.

For the water masses of PWW, CSW, and ACW, the net average increase in sDIC (Figure S8 in the Supporting 
Information S1) lead to an average decrease in pH and Ωarag by −0.0033 years −1 and −0.0104 years −1, respec-
tively. The contribution of freshwater input (salinity) and sTA are small (Figure 4). As a result, the cumulative 
changes from thermal and non-thermal components in pH and Ωarag are −0.0035 years −1 and −0.0106 years −1, 
respectively, which are consistent with the observed long-term OA trends (accounting for 103% ± 11% for pH 
and 121% ± 36% for Ωarag) (Figure 4). In the ACW, the CO2 sink has increased over the past two decades (Tu 
et al., 2021; Zheng et al., 2021). The increased vertical flux and respiration of organic matter below the pycno-
cline introduces more additional CO2 into the subsurface CSW and PWW waters (aerobic respiration; Stabeno 
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et al., 2018), thereby decreasing pH and Ωarag and enhancing subsurface and near-bottom acidification over the 
past 17 years.

Upon moving northwards to the shelf break and slope, where large portion (>90%) of the upper layer is comprised 
of ESMW and LSMW (Figures 2b and 2c), the sea-ice edge has retreated northwards rapidly from 2002 to 2019 
(Figure 1 and Figure S1 in the Supporting Information S1). The net increase in sDIC (Figure S8 in the Supporting 
Information S1) could lead to large decreases in pH and Ωarag of −0.0148 years −1 and −0.0465 years −1 (Figure 4), 
while increase in sTA could also offset those changes by around half (increasing pH and Ωarag by 0.0086 years −1 
and 0.0025 years −1, respectively) (Figure 4; see Equation 6 for detailed calculations). The contribution of freshwa-
ter input (salinity) only changes pH by 0.00018 years −1 and Ωarag by −0.0018 years −1. As a result, the cumulative 
changes from thermal and non-thermal components in pH and Ωarag are −0.0085 years −1 and −0.0265 years −1, 
respectively, which is also consistent with the observed long-term OA trends (account for 116% for pH and 97% 
for Ωarag) (Figure 4). We explored the possible explanations for the sizable effect from TA changes, and found that 
dissolution of CaCO3 during sea-ice melt is the most likely cause, subjected to the limited data, further studies 
such as collect the data of Ca 2+ are needed to fully unveil the CaCO3 cycle during ice melt-formation processes.

We further investigate the primary mechanisms driving the long-term DIC increase. Strengthened air-sea CO2 
exchange due to sea-ice melt and enhanced organic matter respiration due to inflow of Pacific waters are the 
most likely causes. The increased uptake of atmospheric CO2 from 2002 to 2019 would reduce pH and Ωarag by 
−0.0038 years −1 and −0.012 years −1 (following Tu et al., 2021), respectively, which contributes to about 79% 
and 71% of the total pH and Ωarag long-term trends in the Chukchi Sea. The contribution from respiration was 

Figure 3.  Estimated rates of yearly change in seawater Ωarag and pH throughout the water column in the Chukchi Sea. The water masses include Pacific Winter Water 
(PWW), Alaska Coastal Water (ACW), Chukchi Summer Water (CSW), Early season Melt Water (ESMW), and Late-season Melt Water (LSMW).
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then estimated from indicators of NOx − (NO3 − + NO2 −) and apparent oxygen utilization (AOU), which increased 
by 0.14 and 0.76 μmol kg −1 yr −1 from 2002 to 2019 (Figure S9 in the Supporting Information S1). Based on the 
Redfield ratio of O/C/N = −138/106/16 and DIC changes, the corresponding pH changes are −0.0016 (AOU-de-
rived) to −0.025 (NOx-derived) and the corresponding Ωarag changes are −0.013 (AOU-derived) to −0.0078 
(NOx-derived). These respectively contribute to 35%–52% and 47%–76% of the total pH and Ωarag long-term 
trends in the Chukchi Sea.

4.  Summary and Concluding Remarks
Based on the 17-year data set, we found a distinct acidification with a mean annual change rate of −0.0047 ± 0.0026 
for pH and −0.017 ± 0.009 for Ωarag from 2002 to 2019 throughout the whole water columns in the Chukchi Sea. 
These OA rates are approximately 2–3 times faster than the OA rate driven only by increased atmospheric CO2 
in the open oceans (Bates, Astrol, et al., 2014; Wakita et al., 2021). The rapid acidification was induced by the 
rapid increase of DIC, with compounding effects from increased atmospheric CO2 uptake and stronger organic 
matter remineralization. This is in stark contrast to that in the global open ocean, where the atmospheric forcing 
is similar to coastal oceans but the intensity of biological CO2 uptake is substantially lower.

This study also shows that the undersaturation with respect to aragonite in PWW has continued for ∼10 years, 
beginning in 2010. If this trend continues and the sea surface pCO2 values follow the atmospheric pCO2, we 
suggest that the other water masses are expected to encounter undersaturation (Ωarag < 1) as early as 2036. In 
the future, increased atmospheric CO2 and prolonged summertime ice free period will continue to decrease pH 
and Ωarag. In the meantime, the nutrient-rich Pacific inflow will also stimulate the biological activity and surface 
CO2 uptake in the Chukchi Sea, but release more CO2 into the subsurface water from remineralization. Although 
at present there is no prediction for future changes of the Arctic Ocean circulation pattern regarding the Pacific 
inflow water, it is suggested that all the processes above will contribute to severe acidification in the Chukchi Sea, 
which eventually threatens the shelled organisms and other parts of the ecosystem.

Figure 4.  The quantification of each driver on altering the Ωarag and pH yearly rates. Colors indicate different water masses. 
The ‘sum’ term is the accumulative effect from T, S, sDIC, and sTA, and the ‘observed’ term is the observed yearly rate.
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Data Availability Statement
The data synthesis used in this manuscript can be accessed at the Mendeley data repository, which can be found 
at https://data.mendeley.com/datasets/vytzhmm254/1 (doi:https://doi.org/10.17632/vytzhmm254.1).
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